Difference between revisions of "heat dissipation"

From Noah.org
Jump to navigationJump to search
m (Created page with 'Category: Engineering = Heat dissipation, heat sinks, cooling, thermal management = == thermal conductivity of materials == ;Diamond: ;Copper: 401 W·m−1·K−1 ;Beryll…')
 
 
Line 5: Line 5:
 
== thermal conductivity of materials ==
 
== thermal conductivity of materials ==
  
;Diamond:  
+
;Diamond: 2200 W/(m·K) -- Note that thermal conductivity is not constant across all isotopes or environmental conditions. The <sup>12</sup>C (99.9%) isotope thermal conductivity is 33.2&nbsp;W/(cm·K), and at low temperature that rises to 410&nbsp;W/(cm·K) at 104&nbsp;K.
 
;Copper: 401 W·m−1·K−1
 
;Copper: 401 W·m−1·K−1
 
;Beryllium: specific heat (1925 J·kg<sup>−1</sup>·K<sup>−1</sup>) and thermal conductivity (216 W·m<sup>−1</sup>·K<sup>−1</sup>)
 
;Beryllium: specific heat (1925 J·kg<sup>−1</sup>·K<sup>−1</sup>) and thermal conductivity (216 W·m<sup>−1</sup>·K<sup>−1</sup>)
 
;Aluminum: 167 W/m-K
 
;Aluminum: 167 W/m-K

Latest revision as of 12:39, 12 October 2014


Heat dissipation, heat sinks, cooling, thermal management

thermal conductivity of materials

Diamond
2200 W/(m·K) -- Note that thermal conductivity is not constant across all isotopes or environmental conditions. The 12C (99.9%) isotope thermal conductivity is 33.2 W/(cm·K), and at low temperature that rises to 410 W/(cm·K) at 104 K.
Copper
401 W·m−1·K−1
Beryllium
specific heat (1925 J·kg−1·K−1) and thermal conductivity (216 W·m−1·K−1)
Aluminum
167 W/m-K